Uniform Convergence of Multigrid V{cycle Iterations for Indefinite and Nonsymmetric Problems

نویسندگان

  • James H. Bramble
  • Do Y. Kwak
  • Joseph E. Pasciak
چکیده

In this paper, we present an analysis of a multigrid method for nonsym-metric and/or indeenite elliptic problems. In this multigrid method various types of smoothers may be used. One type of smoother which we consider is deened in terms of an associated symmetric problem and includes point and line, Jacobi and Gauss-Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal form, that is, the product of the operator and its transpose. Other smoothers studied include point and line, Jacobi and Gauss-Seidel (with certain orderings). We show that the uniform estimates of 6] for symmetric positive deenite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indeenite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is suuciently ne (but not depending on the number of multigrid levels).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigrid Algorithms for Nonconforming and Mixed Methods for Nonsymmetric and Indefinite Problems

In this paper we consider multigrid algorithms for nonconforming and mixed finite element methods for nonsymmetric and/or indefinite elliptic problems. We show that a simple V-cycle multigrid iteration using conforming coarse-grid corrections converges at a uniform rate provided that the coarsest level in the multilevel iteration is sufficiently fine (but independent of the number of multigrid ...

متن کامل

Multigrid Algorithms for Nonconforming and Mixed Methods for Symmetric and Nonsymmetric Problems

In this paper we consider multigrid algorithms for nonconforming and mixed nite element methods for symmetric and nonsymmetric second order elliptic problems We prove optimal convergence properties of the W cycle multigrid algorithm and uniform condition number estimates for the variable V cycle preconditioner for the symmetric problem For the nonsymmetric and or inde nite problem we show that ...

متن کامل

New Convergence Estimates for Multigrid Algorithms

In this paper, new convergence estimates are proved for both symmetric and nonsymmetric multigrid algorithms applied to symmetric positive definite problems. Our theory relates the convergence of multigrid algorithms to a "regularity and approximation" parameter a 6 (0,1] and the number of relaxations m. We show that for the symmetric and nonsymmetric V cycles, the multigrid iteration converges...

متن کامل

The Analysis of Multigrid Algorithms for Nonsymmetric and Indefinite Elliptic Problems*

We prove some new estimates for the convergence of multigrid algorithms applied to nonsymmetric and indefinite elliptic boundary value problems. We provide results for the so-called 'symmetric' multigrid schemes. We show that for the variable 2^-cycle and the ^-cycle schemes, multigrid algorithms with any amount of smoothing on the finest grid converge at a rate that is independent of the numbe...

متن کامل

Towards Automatic Multigrid Algorithms for SPD, Nonsymmetric and Indefinite Problems

A new multigrid algorithm is constructed for the solution of linear systems of equations which arise from the discretization of elliptic PDEs. It is defined in terms of the difference scheme on the fine grid only, and no rediscretization of the PDE is required. Numerical experiments show that this algorithm gives high convergence rates for several classes ofproblems: symmetric, nonsymmetdc and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992